This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Senin, 29 Agustus 2016

Fisika (Materi Arus Bolak Balik)

Sumber arus bolak-balik adalah generator arus bolak-balik yang prinsip kerjanya pada perputaran kumparan dengan kecepatan sudut ω yang berada di dalam medan magnetik. Sumber ggl bolak-balik tersebut akan menghasilkan tegangan sinusoida berfrekuensi f. Dalam suatu rangkaian listrik, simbol untuk sebuah sumber tegangan gerak elektrik bolak-balik adalah :


Tegangan sinusoida dapat dituliskan dalam bentuk persamaan tegangan sebagai fungsi waktu, yaitu:

V = Vm .sin 2 π .f.t
(1.0)
Tegangan yang dihasilkan oleh suatu generator listrik berbentuk sinusoida. Dengan demikian, arus yang dihasilkan juga sinusoida yang mengikuti persamaan:

I = Im .sin 2 π .f.t
(1.1)
dengan Im adalah arus puncak dan t adalah waktu.

Untuk menyatakan perubahan yang dialami arus dan tegangan secara sinusoida, dapat dilakukan dengan menggunakan sebuah diagram vektor yang berotasi, yang disebut diagram fasor. Istilah fasor menyatakan vektor berputar yang mewakili besaran yang berubah-ubah secara sinusoida. Panjang vektor menunjukkan amplitudo besaran, dan vektor ini dibayangkan berputar dengan kecepatan sudut yang besarnya sama dengan frekuensi sudut besaran. Sehingga, nilai sesaat besaran ditunjukkan oleh proyeksinya pada sumbu tetap. Cara ini baik sekali untuk menunjukkan sudut fase antara dua besaran. Sudut fase ini ditampilkan pada sebuah diagram sebagai sudut antara fasor-fasornya.

 Diagram fasor arus dan tegangan berfase sama

Gambar 1 : Diagram fasor arus dan tegangan berfase sama.

Gambar 1 diatas memperlihatkan diagram fasor untuk arus sinusoida dan tegangan sinusoida yang berfase sama yang dirumuskan pada persamaan (1.0) dan (1.1). Ketika di kelas X kita telah mempelajari dan mengetahui bahwa:

(1.3)

yang menyatakan akar kuadrat rata-rata tegangan. Dan akar kuadrat rata-rata arus, yang dirumuskan:

(1.4)
Nilai rms dari arus dan tegangan tersebut kadang-kadang disebut sebagai “nilai efektif ”.

1. Rangkaian Resistor

Rangkaian dengan sebuah elemen penghambat, Arus berfase sama dengan tegangan, Diagram fasor arus dan tegangan

Gambar 2 : (a) Rangkaian dengan sebuah elemen penghambat. (b) Arus berfase sama dengan tegangan. (c) Diagram fasor arus dan tegangan.

Gambar 2(a) memperlihatkan sebuah rangkaian yang hanya memiliki sebuah elemen penghambat dan generator arus bolak-balik. Karena kuat arusnya nol pada saat tegangannya nol, dan arus mencapai puncak ketika tegangan juga mencapainya, dapat dikatakan bahwa arus dan tegangan sefase (Gambar 2(b)). Sementara itu, Gambar 2(c) memperlihatkan diagram fasor arus dan tegangan yang sefase. Tanda panah pada sumbu vertikal adalah nilai-nlai sesaat. Pada rangkaian resistor berlaku hubungan:

V= Vm .sin 2 π .f.t
V= Vm .sin ω t
Jadi,


I= I.sin ω t
(1.5)
Sehingga, pada rangkaian resistor juga akan berlaku hubungan sebagai berikut:

(1.6)
(1.7)
2. Rangkaian Induktif

Rangkaian induktif, Arus berbeda fase dengan tegangan, Diagram fasor arus dan tegangan yang berbeda fase

Gambar 3 : (a) Rangkaian induktif (b) Arus berbeda fase dengan tegangan (c) Diagram fasor arus dan tegangan yang berbeda fase.

Gambar 3 diatas memperlihatkan sebuah rangkaian yang hanya mengandung sebuah elemen induktif. Pada rangkaian induktif, berlaku hubungan:
(1.8)
V = Vm sin ωt
(1.9)

Tegangan pada induktor VL setara dengan tegangan sumber V, jadi dari persamaan (1.8) dan (1.9) akan diperoleh:

(1.10)
diketahui bahwa:


maka:

(1.11)
Jika ω L = 2 π fL didefinisikan sebagai reaktansi induktif (X L ), maka dalam suatu rangkaian induktif berlaku hubungan sebagai berikut:

(1.12)
(1.13)
Perbandingan persamaan (1.9) dan (1.11) memperlihatkan bahwa nilai VL dan IL yang berubah-ubah terhadap waktu mempunyai perbedaan fase sebesar seperempat siklus. Hal ini terlihat pada Gambar 3(b), yang merupakan grafik dari persamaan (1.9) dan (1.11). Dari gambar terlihat bahwa VL mendahului I, yaitu dengan berlalunya waktu, maka VL mencapai maksimumnya sebelum IL mencapai maksimum, selama seperempat siklus. Sementara itu, pada Gambar 3(c), pada waktu fasor berotasi di dalam arah yang berlawanan dengan arah perputaran jarum jam, maka terlihat jelas bahwa fasor V,m mendahului fasor IL,m selama seperempat siklus.


3. Rangkaian Kapasitor

Rangkaian kapasitif, Perbedaan potensial melalui kapasitor terhadap arus, Diagram fasor rangkaian kapasitif

Gambar 4 : (a) Rangkaian kapasitif. (b) Perbedaan potensial melalui
kapasitor terhadap arus. (c) Diagram fasor rangkaian kapasitif.

Gambar 4 memperlihatkan sebuah rangkaian yang hanya terdiri atas sebuah elemen kapasitif dan generator AC. Pada rangkaian tersebut berlaku hubungan:

Vc = V = Vm .sin ω t
(1.14)

Dari definisi C diperoleh hubungan bahwa VC = Q/C, maka akan diperoleh:

Q = C.Vm .sin ω t

atau

(1.15)
Diketahui bahwa:

maka akan diperoleh:

(1.16)
Jika didefinisikan sebuah reaktansi kapasitif (XC), adalah setara dengan :


maka dalam sebuah rangkaian kapasitif akan berlaku hubungan sebagai berikut:


(1.17)

(1.18)
Persamaan (1.14) dan (1.15) menunjukkan bahwa nilai VC dan LC yang berubah-ubah terhadap waktu adalah berbeda fase sebesar seperempat siklus. Hal ini dapat terlihat pada Gambar 4(b), yaitu VC mencapai maksimumnya setelah IC mencapai maksimum, selama seperempat siklus. Hal serupa juga diperlihatkan pada Gambar 4(c), yaitu sewaktu fasor berotasi di dalam arah yang dianggap berlawanan dengan arah perputaran jarum jam, maka terlihat jelas bahwa fasor VC, m tertinggal terhadap fasor IC,m selama seperempat siklus.